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Abstract — The long life and health monitoring of structure are 
most important for their lifespan optimization and preservation. 
WSN technology has proved to be a back boon for structural 
health monitoring in 21st century due to its easy of installation, 
minimal structural damage and low cost. This paper provides a 
review on the recent developments in the area of SHM using 
WSs. 
Keywords: wireless sensor network; structural health 
monitoring; scheduling approach; energy efficiency 

I. INTRODUCTION 

Structural Health observance (SHM) is outlined 
because the method of implementing harm or broken detection 
and characterization strategy for applied science structures. 
This changes to the fabric, resistivity and/or geometric 
properties of a structural system, as well as changes to the 
boundary conditions and system property that badly have an 
effect on the system’s performance, is outlined as harm. In 
SHM method we tend to observe system mistreatment 
sporadically sampled dynamic (time varying) response 
measurements from associate degree array of sensors. Then the 
extraction of injury, damage-sensitive options from these 
measurements are taken out. To work out the present state of 
system health, the applied mathematics (mathematical) analysis 
of the options is performed. There’ll be inevitable aging and 
degradation and weakening within the structure ensuing from 
operational atmosphere. Long run SHM is outlined as output of 
this method that's sporadically updated relating to the power of 
the structure to perform its calculated performs. Relating to the 
integrity of the structure, SHM is employed for speedy 
condition screening and it gives real time info, as an example 
just in case of maximum events like earthquakes or blast 
loading [1]. To estimate the state of structure health, SHM 
detects the changes in structure that affects its performance. 
Time-scale of amendment and severity of amendment are 2 
major factors. However quickly the amendment happens is 
time- scale of amendment, and degree of amendment is 
severity of amendment. SHM has 2 major categories: disaster 
response (earthquake, explosion, etc.) and continuous health 
observance (ambient vibration, etc.). SHM has 2 approaches: 
direct harm detection (visual scrutiny, and X- ray, etc.) and 
indirect harm detection (change in structural 
properties/behavior). A typical SHM system, in general, 
includes 3 major categories: a detector system, information 
/knowledge/information}  process  system  (including  data 

acquisition, transmission, and storage), and health analysis 
system (including diagnostic algorithms and knowledge 
managements). 
Why SHM? 
WSN with SHM gives an effective technology for sensing and 
telecommunication. Due to feature, the reliability and 
availability are guaranteed. WSN with SHM provides an early 
prediction of risks. WSNs serve as a best to provide a stable 
structure for SHM systems [2]. The limitation in WSN includes 
usage of the sensor nodes, high amount of data and 
connectivity. The Existing system uses the centralized 
mechanism to determine the health status of the sensor nodes. 
But it is inappropriate to changing environment and enabling 
wireless technology. The proposed system provides a 
decentralized mechanism and an adoption of wireless 
technology. The backup sensors are used to avoid the failures 
that occur during the transmission. The objective of energy 
consumption and prolonged lifetime are achieved. 

Parameter Wired 
Sensor 
Networks 

Wireless 
Sensor 
Networks 

Cost Very  high, 
real world 
examples 
costing 
$10,000 to 
$25,000 [3] 

Low, each 
sensor node 
costing 
approximately 
$200[3] 

Deployment 
Time 

Very long, 
one  real 
world 
example 
taking 
several days 
[4] 

Short, same 
real world 
example 
taking a half 
hour [4] 

Lifespan Long, 
typically 
limited by 
hardware 

Short, 
typically 
limited  by 
node battery 
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overall health. This method is one in every of the biggest 
WSN-based SHM systems to this point – with a complete of 
sixty-four detector nodes deployed on the bridge. Another 
WSN based SHM system has been recently deployed on the 
Zheng Dian Bridge in China [3]. The sensors during this 
network collect close acceleration knowledge and use the quick 
Fourier remodel (FFT) and also the resultant Power Spectral 
Density (PSD) to see the structure’s mode form. This paper 
presents a comprehensive survey of the state of the art analysis 
within the application of WSNs to the sphere of SHM. Existing 
surveys like [4], [10], and [8] have primarily centered on topics 
like detector hardware, node hardware, network protocols, and 
software system, and potential applications. 
Summaries like [8] have provided a general summary of the 
challenges of WSNs for SHM however haven’t highlighted 
future analysis directions. Additionally, by presenting an 
outline of theoretical work, laboratory test bed-based 
experimental work, and real-structure experimental work, this 
paper provides a comprehensive description of existing 
challenges and future trends within the application of SHM to 
WSNs. Lastly; this paper focuses additional on the 
telecommunications part of WSNs for SHM than existing 
surveys. 

 

 
TABLE I COMPARISON OF WIRED AND WIRELESS 
SENSOR NETWORKS 

II. LITERATURE SURVEY: 

In WSNs for SHM sensors are bring into effective action 
at varied locations throughout a structure. These sensors collect 
data regarding their close like acceleration, close vibration, 
load and stress at sampling frequencies upwards of one 
hundred rates [3]. Hence, the sensing and sampling rates and 
quantity of collected knowledge are abundant on top of those in 
different applications in WSNs; and as a result, WSNs for 
SHM introduce challenges in network style. Detector nodes 
transmit the perceived knowledge to the sink either directly or 
by forwarding every other’s packets. Knowledge aggregation 
and process is very important for the detection and precise 
localization of structural injury and might occur in different- 
different locations (e.g., nodes, cluster-heads, and/or central 
server) reckoning on the configuration. Typically, injury 
detection needs the comparison of the structure’s gift modal 
options to those related to the structure’s uninjured state. 
Modal options of structures are chiefly depicted by the mode 
shapes the natural vibration pattern for a given structure. 

SHM has been transportation into effective action in 
crucial structures like aerial vehicles, ships, high-rise buildings, 
dams, and bridges. Primarily, these installations are wired; but, 
associate increasing variety are mistreatment WSNs. one in 
every of the primary WSNs for SHM was put in on the sound 
Bridge in 2007 by a quest team at the University of Calif. in 
Berkeley [8]. Sensors during this network collect close 
vibrations that are then routed from the origin detector node to 
a centralized base station. The bottom station then processes 
the information and makes a call regarding the structure’s 

III. BLOCK DIG. SHM USING WSNS 

In general, SHM requires the installation of an outsized 
number of sensors throughout a structure capable of collecting 
sensed data. The collected data is processed such decisions 
about the structure’s overall health are often made. This section 
provides a comprehensive overview of the components and 
processes involved in SHM using WSN. This section begins 
with a summary of commonly sensed structural health 
parameters then an summary of the sort of sensors used. Next 
common damage detection algorithms used in damage 
detection systems are presented and discussed. The section 
concludes with summary of injury localization techniques. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: SHM using WSNs 

A. Sensors and Parameters 
One of the most important considerations when designing 

SHM system is the selection of sensors and sensed parameters. 
Factors like sensor power consumption and sensed parameters 
influence overall network design by influencing routing 

 lifespan lifespan 

Number of 
Sensors 

Typically 
low due to 
sensor 
installation 
difficulty. 

Typically 
higher due to 
ease of sensor 
installation 

Connection 
Bandwidth 

High 
bandwidth 
due to wired 
connection 

Limited 
bandwidth 
and unreliable 
connection 

Data Rate High sensor 
data rates 

Lower sensor 
data rates but 
higher  than 
conventional 
WSNs 

Sensor 
Synchronicity 

Very high 
due to wired 
connections. 

Concern due 
to wireless 
connection. 

IJECE JOURNAL || ISSN:2349-8218 || VOLUME 14 ISSUE 8 2024

PAGE N0: 2



 

 

protocol selection, damage detection algorithm selection, 
damage localization algorithm selection, and network lifespan. 
1) Sensor Parameters: 
Parameters commonly detected, recorded and monitored in 
SHM systems can be broadly classified as the following types 
[13] 

• Load - Loads are the forces applied to the structure. Possible 
loads are environmental loads such as wind speeds, and loads 
due to passing vehicles. Loads can be static or dynamic. 
Typically, the response of the structure to these loads can be 
measured by the SHM system. 
• Global Load Response – Global loads responses are the 
structure’s response to a given load that can be measured 
throughout the entire structure. Typically, measured parameters 
are a structure’s acceleration and velocity. 
• Local Load Response – Local load responses are the 
structure’s response to a given load that can only be measured 
in a specific part of the structure 
• Environmental Factors – Environmental factors are external 
to the structure itself and relate to the structure’s environment. 
Measured parameters include temperature, salinity, humidity, 
and atmospheric acidity. These parameters can be used in the 
estimation of environmental loads such as winds. 
In order to properly capture the response of a given structure, 
sensors got to be installed at various locations and data should 
be collected at an appropriate rate for a sufficient period of 
time. The frequencies of dominant modes are typically around 
10 Hz; however, sampling frequencies can be chosen at values 
that are upwards of 100 Hz [24]. Higher sampling rates allow 
the inclusion of higher-frequency modes which can be used in 
damage detection and localization. The high sampling rate 
required for successful SHM significantly increases the amount 
of collected data and, consequently, the amount of data 
aggregated, processed and transmitted in the overall network. 

SENSORS FOR SHM 
The sensing system in the SHM is formed by smart 
materials/sensors; Fiber optic sensors (FOS), piezoelectric 
sensors, magneto resistive sensors, and self - diagnosing fiber 
reinforced structural composites. The sensors are characterized 
with very important capabilities of sensing various physical 
and chemical parameters related to the health of the structures 
such as vibrations and all other important factors 

 
FIBRE OPTIC SENSORS (FOSS) 
FOS may be classified by many ways. FOS may be classified 
supported the modulation of sunshine characteristics (intensity, 
wavelength, phase, or polarization etc.) by the parameters to be 
detected. It also can be classified by the tactic through that the 
sunshine within the sensing segments is changed within or 
outside the fiber (intrinsic or extrinsic). FOS also can be 
classified supported the sensing range; native (Fabry-Perot 
FOS or long-gauge FOS etc.), similar distributed (fiber full 
general grating) and distributed sensors (Brillouin-scattering- 
based distributed FOS). FOS square measure embedded in 
recently made civil structures, together with bridges, buildings, 
and dams to yield data concerning strain (static and dynamic), 

temperature, defects (delamination, cracks, and corrosion) and 
concentration of chloride ions. On existing structures, FOSs are 
typically surface mounted. The info collected by FOSs is 
employed to judge the protection of each the new-built 
structures and repaired structures, and diagnose. 

 
PIEZOELECTRIC SENSORS: 
Piezoelectric materials exhibit synchronous actuator/sensor 
behavior supported electrical-mechanical deformation. There 
are many varieties of electricity materials: electricity ceramics, 
electricity polymers, and electricity composites. Supported the 
measure of electrical electrical resistance and elastic wave’s 
electricity sensors were fresh introduced into SHM of 
engineering science structures as a vigorous sensing 
technology. 

 
C. MAGNETOSTRICTIVE SENSORS 
Ferromagnetic materials are the materials that are automatically 
ill-shapen once placed in robust field [7]. This development is 
thought because the magnetostrictive result. Within the inverse 
magnetostrictive result, the magnetic induction of the fabric 
changes once the fabric is automatically ill-shapen. supported 
the higher than phenomena, Kwun and Bartels made-up a kind 
of magnetostrictive device (MsS) while not direct physical 
contact to the fabric surface that might generate and notice 
target-hunting waves within the magnetic force materials 
beneath testing. Khazem et al. additionally utilised MsS to 
examine clothing ropes on the President Bridge in big apple. A 
pulse of ten kilocycles per second longitudinal target-hunting 
wave on the length of the clothing detected the mirrored signals 
from geometric options and defects within the clothing, a 
cement and degree of hurt [11]. 
Out of the above sensor types, the most-commonly used are 
piezoelectric accelerometers due to their low cost and ease of 
use [30]. As a result, most damage detection and localization 
methods have been developed for these sensors. 
B. Damage Detection and Localization in WSNs for SHM, 
sensor nodes collect parameter data such as acceleration, strain, 
velocity, and displacement. This raw data must be processed 
such that features such as the structure’s modal parameters can 
be extracted. These features are used by SHM based WSNs in 
both damage detection and localization [23]. The remainder of 
this section discusses the commonly-used damage detection 
and localization techniques. 
Damage Detection Methods one of the primary goals in SHM 
is the detection of structural damage. Typically, damage 
detection requires the collection of sensor data that can be used 
to extract parameters related to the structure’s overall health. 
The most common parameters used in damage detection are 
modal parameters like the natural frequency and mode shape. 
Modal parameter estimation can be performed in both the time 
and frequency Domain [23]. Once modal parameters are 
extracted, damage detection algorithms are used to determine 
whether damage has occurred. Taxonomy of damage-detection 
methods is Illustrated in Fig. 2. In time domain analysis, the 
time series data collected from a sensor node is directly 
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processed to extract modal parameters. Common techniques 
used are the two-stage least 
Squares method (alternatively known as the auto-regressive 
moving average (ARMA) model method), the Ibrahim time 
domain (ITD) method, the impulse response function (IRF) - 
driven method [23], and the covariance matrix method [24]. 
One common advantage of time domain techniques is that they 
provide stable results, however they work for slightly damped 
systems since they require a significant number of time domain 
samples to efficiently operate on highly damped systems [25]. 

 
IV Taxonomy of Damage Detection Methods 

 

 
Fig. 2 Taxonomy of Damage Detection Methods 

 
The ARMA model method uses statistical modelling 

to represent the relationship between the excitation pattern and 
the structural response under undamaged and damaged states. 
The response of the structure at any instant of time is presented 
in terms a number of stored observations and a number of 
residual error terms [26]. There exist several variations of 
ARMA model based damage detection, one of which is based 
on the sum of the squares of the residuals [27]. In a different 
technique [28], [29] ARMA models are fitted to an excitation 
pattern through a two stage method. First, the AR model is 
produced and the residuals from the AR model used as an input 
for the second stage. Next, depending on the excitation pattern, 
an AR or ARX model is fitted to the residuals. The two-stage 
method, unlike other ARMA methods, guarantees 
convergence. The resultant model can be used in the extraction 
of modal parameters such as the damping ratio, natural 
frequency, mode shape and damped natural frequency [28]. 
Typically, ARMA models are only applicable in systems with 
white noise excitation patterns. If alternate excitation patterns 

are applied, the resultant model is an autoregressive exogenous 
(ARX) model. The same modal parameter extraction method 
can be used for ARX models. One drawback of the technique 
presented in [27] is that the data used to build the model was 
collected through forced excitation experiments. Hence, this 
technique may not be valid for structures subjected to other 
sources of excitation. Although ARMA model techniques can 
detect damage effectively, they fail to detect minor damages 
and they require installation of a large number of sensors [30]. 
The ITD method uses the Inverse Fourier Transform (IFT) to 
attain the IRF from the given sensor data [23]. The IRF can 
then be used to estimate modal frequencies and then, using 
those frequencies, the remaining modal parameters such as 
mode shape and natural frequency. The IRF are first stacked to 
form the Henkel matrix, which is then decomposed into modal 
observability matrix and modal controllability matrix, from 
which the modal parameters are obtained. Once the modal 
parameters are obtained, they are compared to those of 
undamaged structure to decide on the current state of the 
structure. One common IRF-driven algorithm is the Eigen 
system realization algorithm (ERA) [21], which was proposed 
in 1985, however, a recent modification of ITD method was 
proposed in [22] to address the main drawback of ITD related 
to deficiency in identifying closely spaced structure modal 
shapes and hence their modal parameters. The covariance- 
driven subspace damage detection techniques are based on the 
fact that a state-space model can be used to represent a 
vibrating structure [10], [23]. The state space model 
representation of a vibrating structure comprises the definitions 
of state transition matrix, input matrix and output matrix. In the 
first step of covariance-driven method is to estimate the 
covariance matrix of the collected time domain measurements 
as well as the next state-output covariance matrix. Using these 
two covariance matrices, the state transition matrix is 
estimated. In the second step, an eigenvalue decomposition 
operation is applied on the estimated state transition matrix. 
Using the resultant eigenvector matrix as well as the input and 
output matrices, the modal participation and mode shape 
matrices are estimated. In [24], the covariance matrix method 
of damage detection is used on the acceleration response 
covariance matrix. This method was shown to be more 
effective than traditional damage detection techniques such as 
the mode shape comparison method. On the other hand, one 
drawback of subspace based damage detection techniques is 
that they are affected by variations in unknown ambient 
excitations, which leads to a false alarm of damage detection 
[24]. Data-driven subspace identification techniques operate 
directly on the collected time-domain measurements rather 
than the estimated covariance matrix as in the covariance based 
method presented above. This method was first presented by 
the pioneering work of Overschee and De Moor in [15]. In this 
method, the covariance estimation process is replaced by a 
projection process between future and past outputs [16], [27]. 
In particular, the row space of the future outputs is projected 
into the row space of the past outputs. To perform this, a QR 
decomposition operation is applied. One main advantage of 
data-driven subspace method is that by avoiding estimation of 
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covariance matrix, squaring both error and noises is also 
avoided. However, the drawback of this method is that no 
information is available regarding the accuracy of the estimated 
modal parameters [28]. 
In frequency domain analysis, the collected statistic data is 
transformed from the time domain to the frequency domain 
through transforms like the Fast Fourier Transform (FFT) and 
therefore the Wavelet Transform (WT). Within the literature, 
frequency domain -based damage detection methods include 
the peak-picking (PP) method, the complex mode identification 
function method (CMIF), and therefore the rational fraction 
polynomial method (RFP) [23]. The advantage of frequency 
domain methods over the time domain methods is that less 
noise modes are obtained. However, the FFT operation has its 
own drawbacks, one among which is leakage. Although the 
effect of leakage is often reduced by using windowing 
functions, its effect can't be totally eliminated [25]. The PP 
method of modal parameter extraction is probably the 
only modal parameter extraction method. The FFT is applied to 
collected sensor data and therefore the Eigen frequencies are 
identified at the peaks of the frequency response plot. The 
Eigen frequencies are utilized in the extraction of natural 
frequency, damping ratio and mode shape. This method, 
although simple, is difficult to use in cases where the frequency 
response peaks are poorly defined and where the damping 
ratio isn't low [28]. The CMIF method, also referred to as the 
frequency domain decomposition (FDD) method, is an 
alternate modal parameter estimation method based off the PP 
method [29]. This method uses singular value decomposition 
(SVD) to decompose the output power spectrum into all the 
mode shapes for the given structure. Additionally, to attaining 
all relevant mode shapes this method also extracts all modal 
parameters for every mode shape. The peaks generated through 
CMIF, which correspond to modal frequencies, are 
proportional to the amplitude of the frequency response, which 
may be thought of as a plus since it provides the examiner to 
urge a sense for the strength and contribution of every mode. 
However, when a robust mode exists, it can dominate the 
output and consequently cause accessible peaks to disappear 
[27].The RFP method for modal parameter estimation which 
was first presented in [20], parameterizes the frequency 
response matrix as an RFP model [23]. Supported the RFP 
model, rectilinear regression is often applied and therefore 
the matrix coefficients estimated. Modal parameters can then 
be  attained  from  the  calculated  coefficients. The 
most advantage of FRF damage detection method is its 
simplicity also as its independency of acquiring modal analysis 
of mode shapes [20]. However, it's several drawbacks 
including deficiency in estimating severity of injury also as 
inability to detect small damages [20]. Once modal 
parameters are derived for a given structure, it becomes 
possible to assess the structure’s overall health. Simple damage 
detection methods include statistical analysis, mode frequency 
comparison and mode shape comparison. In statistical analysis 
techniques, the ARMA model for the given structure is 
compared to the ARMA model for the undamaged structure. If 
the difference between the 2 models is bigger than a specified 

tolerance the structure are often classified as damaged. Mode 
frequency and mode shape based damage detection methods 
compare the present mode and/or frequency shape thereto of 
the undamaged structure. Once more, if the error becomes 
sufficiently large, the structure is taken into account damaged. 
These techniques, although simple, have found extensive use in 
SHM. The Hilbert-Huang transform has found use in damage 
detection [24], [25], [25]. The proposed algorithm combines 
empirical modal decomposition (EMD), the random decrement 
technique and therefore the Hilbert-Huang transform to 
spot the instant at which structural damage occurs. this 
system are often applied in situations where structures 
experience significant noise and may detect both gradual and 
rapid changes in structural damage, however, it cannot separate 
very close frequencies [25], [25]. In [20], Lamb-wave-based 
damage identification approaches for composite structures is 
presented. The authors enhance the  power of the 
continual wavelet transform in feature extraction from 
vibration signals. Composite damage monitoring rises because 
the top priority problem of SHM. Lamb wave method is 
extremely sensitive for little damages (crack or 
delamination). Additionally, Lamb wave is in a position to be 
propagated for an extended distance without significant 
amplitude attenuation in plate structures. However, the 
phenomenon of dispersion and sophisticated transition, are 
hard to be analyzed and interpreted. Lamb wave is 
unavoidably suffering from interferences and powerful noise. It 
requires more precise and advanced signal processing and 
has extraction techniques to  spot damage  information 
once structural damage has been detected, it's then necessary to 
work out the damage’s location. This process is named damage 
localization, which needs the installation of enough 
sensors such sufficient sensor coverage is provided to locate 
damage anywhere within the structure. Insufficient sensor 
coverage may result in damage detection without localization. 
Commonly used damage localization techniques are frequency 
based [20], mode shape–based [20], flexibility matrix based 
[21], [22], stiffness matrix based [22], and support vector 
machine based [24]. A  taxonomy  illustrating the 
various damage localization methods are often seen in Fig. 3. 

 
V. Damage Localization Taxonomy 

 
Fig. 3 Damage Localization Taxonomy 

The usage of modal parameters such as frequency 
and mode shape in damage localization is desirable due to the 
simplicity in determining these modal parameters. In [20] both 
frequencies based damage localization and mode-shape based 
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damage localization algorithms are proposed. The proposed 
frequency based damage detection algorithm uses changes in 
measured mode shapes to localize damage and changes in 
measured natural frequencies to estimate damage severity. 
Similarly, a mode-shape based damage detection algorithm, 
that uses changes in modal strain energy to localize damage, 
was proposed. Experiments showed that the frequency-based 
method localized damage with a small error while the mode 
based method localized damage with almost no errors. Both 
algorithms could also estimate the severity of the damage. On 
the other hand, the drawbacks of frequency based damage 
localization include that variations such as in mass structure or 
measurement temperature can lead to uncertainty in the 
estimated frequency [20], [15]. In addition, exploiting mode 
shapes for damage classification may be ineffective since 
damage is local and may not affect the shapes of lower modes 
[20], [26]. The flexibility approach for damage localization 
uses a structure’s flexibility matrix to localize structural 
damage. Damage localization typically requires the flexibility 
matrix from the undamaged structure and an estimate of the 
structure’s current flexibility matrix. In [21], the flexibility- 
difference method of injury detection is proposed. Damage is 
localized through computing the change in flexibility between 
the undamaged structure and therefore the current structure. 
This method reliably localizes a structure’s damage and, in 
cases of poor sensor coverage, will find the sensor node 
closest to the structural damage. A similar damage localization 
strategy is employed in [22] with the difference matrix 
computed from the estimated flexibility matrix and 
undamaged flexibility matrix of the structure. The main 
disadvantage of this technique is the necessity of construct an 
accurate model for the undamaged structure [17]. The stiffness 
approach to damage localization uses a structure’s stiffness 
matrix. The stiffness matrix and adaptability matrix are 
often inverted from each other [17]. It is difficult to directly 
estimate the stiffness matrix and, consequently, most efforts 
have been in using statistical techniques to estimate the 
stiffness matrix. In [22], a stiffness matrix based damage 
localization method is employed during which the detection 
of the  present stiffness  matrix  is  viewed  as an 
area optimization problem. Evolutionary algorithms are used 
to produce the stiffness matrix and the estimated stiffness 
matrix compared to that of the undamaged structure to localize 
damage. This method was shown to be effective in scenarios 
where damage slowly spreads throughout the structure but 
would be ineffective in localizing damage in an already 
damaged structure. In [18], an approach for damage 
localization, using both a structure’s flexibility and stiffness 
matrices, is proposed. First, the modal parameters are 
identified and utilized in the estimation of a flexibility matrix. 
The stiffness matrix is then achieved through the inversion 
of the pliability matrix. Both of estimated matrices, the 
undamaged flexibility, and the undamaged stiffness matrix are 
used to localize structural damage. This method is more 
reliable due to the usage of both flexibility and stiffness 
matrices. This approach was shown to work well except in 
scenarios where sensor coverage is sparse. The application of 

support vector machines (SVM) is a relatively new 
phenomenon in SHM. In [14], SVMs are wont to classify 
structural damage patterns for SHM systems with a minimal 
number of sensors. Through the utilization of one sensor on 
the roof of a building and one sensor on rock bottom floor, 
damage was shown to be localizable to a specific floor in the 
building. Damage localization was shown in simulations to 
scale to buildings up to 21 stories height. These results show 
the promise of applying SVMs to damage localization as they 
minimize the number of installed sensors while having 
comparable damage. 

 
VI. Conclusion 

This paper presented a comprehensive review of 
WSN based SHM systems. Background information relating 
to structural health monitoring such as common sensors, 
commonly measured parameters and damage detection and 
localization algorithms were discussed. The main challenges 
of scalability, time synchronization, sensor placement 
optimization and data processing were presented and solutions 
to these problems discussed and compared. Experimental 
work performed in the lab and on real-world structures was 
presented and discussed. Finally, future research directions for 
SHM systems using WSNs were presented. 
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