
 

 

    

A MODULAR FRAMEWORK FOR VLSI DESIGN MANAGEMENT: 
ENHANCING PRODUCTIVITY AND EFFICIENCY 

 
     AUTHOR 1 : THADURI RAHUL 

 
STUDENT 

 
SIDDHARTHA INSTITUTE OF TECHNOLOGY AND SCIENCES, HYDERABAD, INDIA. 

 
 

 AUTHOR 2 : MADIPALLI SUMALATHA 
 

ASSISTANT PROFESSOR 
 

SIDDHARTHA INSTITUTE OF TECHNOLOGY AND SCIENCES, HYDERABAD, INDIA. 
 
 
Abstract:  
 
The increasing complexity of Very Large Scale Integration (VLSI) design necessitates the development 

of effective management frameworks that can enhance productivity and efficiency throughout the design 

process. This paper proposes a modular framework for VLSI design management, aimed at streamlining 

workflows, improving collaboration among multidisciplinary teams, and optimizing resource allocation. 

The framework integrates key components such as design specification, verification, testing, and project 

management into a cohesive system that supports modular design principles. By leveraging advanced 

methodologies like agile project management and concurrent engineering, the proposed framework 

fosters a dynamic environment where teams can adapt to changing requirements and rapidly iterate on 

designs. A case study of a leading semiconductor company demonstrates the framework's effectiveness in 

reducing time-to-market and improving overall design quality. Quantitative metrics indicate a significant 

increase in productivity, with design cycle times reduced by 25% and a 30% enhancement in cross-

functional team collaboration.The findings underscore the potential of a modular approach to VLSI 

design management, providing a scalable solution for addressing the challenges posed by the evolving 

semiconductor industry. This framework not only serves as a guide for VLSI designers and managers but 

also contributes to the ongoing discourse on optimizing design processes in complex engineering 

environments. 
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INTRODUCTION 
 
The Very Large Scale Integration (VLSI) design process has been applied to many systems to achieve 

new prospects for high-performance computing, telecommunications and electronic equipment intended 

for everyday use (e.g., entertainment). Progress in VLSI technology has continually increased the number 

of fabricated devices in a single integrated circuit (Moore’s Law). The increase in complexity, which 

involves considerable bookkeeping and management tasks, has made it more vital to control the design 

process to maintain quality, reliability and extensibility. This control involves “definition, execution and 

control of design methodologies in a flexible and configurable way” (Kalavade and Lee, 1994; Kalavade 

et al., 1995). The VLSI design process is typically described as an iterative process that refines an idea 

for a manufacturable device through several levels of design abstraction (Kishore and Prabhakar, 2009). It 

involves a series of procedures, from specification to fabrication, in which the integrated circuit is 

produced. Starting with abstract requirements, the process involves converting these requirements into a 

register transfer description, e.g., control flow, registers and arithmetic and logical operations, which is 

simulated and tested. The design process then shifts to circuit representation, e.g., gates, transistors and 

interconnections. Simulation is also utilized at this level to verify each component. Finally, the geometric 

layout of the chip is produced in the form of geometric shapes representing circuit elements and their 

interconnections. The layout blueprint aims at achieving area compactness and accuracy in routing and 

timing (Navabi, 1998; Perry, 2002). Such a process requires different design tools (e.g., VLSI CAD) and 

management apparatus (e.g., database systems). “As a design is processed, it must be passed from tool to 

tool. For example, the designer may use a schematic capture tool for initial input, then they wish for their 

design to be minimized and finally simulated” (Hodges and Rounce, 1991). Comprehensive management 

of the design is very important. According to Hodges and Rounce (1991): 

It is all too easy to make changes to a design without documenting them, or without keeping backup 

versions in case references to these changes need to be made at a later date. In a similar way, it is equally 

possible to accidentally delete files with no means of retrieval… Problems also arise with building up a 
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hierarchy of blocks, with each level making use of the blocks in the levels below…the various tools often 

do not support this system of hierarchy directly... 

Workflow-based methodologies have been used to coordinate execution of multiple tasks and activities in 

VLSI design processes (Shepelev and Director, 1996; Marinescu, 2002). Database systems have been 

incorporated in many VLSI design systems (Chu et al., 1983; Hollar et al., 1984; Jullien et al., 1986; 

Katz, 1986) to provide an environment for design data management or tool integration. 

In the general area of modeling a design process, several basic diagrammatic techniques are available, 

such as using a weighted (completion time) directed graph to represent the flow of design, where nodes 

represent tasks and edges depict sequencing of tasks. Markov chains (Johnson et al., 1996), signal flow 

graphs (Eppinger et al., 1997) and petri-nets (Magott and Skudlarski, 1989) are other examples of 

graphing techniques used to analyze design processes. According to Xiu (2008): 

System-level design does not involve implementation detail. It is the approach of viewing the chip in a 

big-picture perspective. It abstracts away the full detail of the design, retaining just enough features to 

validate that functions embodied by the design can perform the specified design goal and can satisfy the 

performance criteria… Preferably, the system-level study and modeling should also support the smooth 

migration to downstream implementation. 

VLSI design is analogous to the design tasks involved in building construction Wikibooks, 2011.First, 

we obtain an architectural drawing based on requirements and specification. Floor plans and constraints 

are then laid out based on the connectivity/accessibility/size of internal spaces. This is followed by 

depicting streams of flow (e.g., electrical, water) in the building, including various requirements, 

synchronization and triggering among different flows (e.g., supplied power, uniformity of flow). There is 

also the issue of maintaining integrity within spaces by specifying partitions and shields. 

Similarly, VLSI design evolves from an architectural blueprint drawn on the basis of specifications of the 

product. Floor plans of the chip are based on the connectivity/accessibility/space of components with 

constraints on placement of the blocks. Electrical plans are then laid down in a power- grid topology that 

includes power requirement supplied over the topology for uniform distribution across all parts of the 

chip and standard-cells. There is also the phase of synchronization that involves timing analysis and 

regioning to place cells (circuits) that share data near each other to minimize timing and reduce wire 

lengths. 

This study introduces a diagrammatical methodology that produces a purely conceptual framework that 
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specifies flows of artifacts in the VLSI design process. The methodology is a descriptive process 

characterized by being independent of technical notions and features uniformity in application (e.g., at 

different levels and of various artifacts). It can provide an environment for managing the design process 

and supporting high-level control policies. 

VLSI design cycle: The VLSI design cycle (Fig. 1) consists of eight interdependent stages: system 

specification, architecture design, functional design, logic design, circuit design, physical design, 

fabrication and packaging. The cycle moves from an abstract specification to a more detailed design that 

can be assessed, tested and implemented. 

The first stage is the system specification stage, which is a high-level representation of the system. During 

this stage, the design specifications are determined and set, taking into consideration certain factors such 

as performance, functionality, physical dimension, design technique and fabrication technology. Size, 

speed, functionality and basic architecture specifications of the system result from this stage. The next 

stage is architecture design, which describes such things as use of Reduced Instruction Set Computer 

(RISC) and determination of cache size to produce micro architectural specifications of the system. 

The third stage is the functional design stage, which defines the main functional units and the 

interconnection between the units in the system. 
 
 
 

 
 

Fig. 1: VLSI design cycle 
  

Fig. 2: A sample of the level of description following the general depictions of stages and phases of the VLSI design life cycle 
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Fig. 3: Abstract wire and abstract port 

At this stage, the system’s behavior is set in terms of system input and output. In addition, the area, 

timing, power and other parameters of each unit are calculated. The output at this stage most of the 

time is a diagram showing relationships and timing between the system’s units. Next, logic design is the 

stage that derives the logic description of the system, including Boolean expressions, data and control paths 

and register allocation. 

The outcome of the logic design stage is a Register Transfer Level (RTL) description represented by 

use of Hardware Description Language (HDL). The circuit design stage deals with logic gates, transistors, 

interconnections and so forth. The physical design stage follows the circuit design; it takes the resulting 

circuit sketch and converts it into a geometric description. This stage will be explained in more detail to 

showcase our proposed representation. The design is then sent to the fabrication and packaging stages to 

produce and test the chip to ensure that all system requirements and specifications are satisfied. 

Problem focus: Current descriptions: According to Sherwani (1999): 

It is important to note that design of a complex VLSI chip is a complex human power management 

project as well. … As a result,  design is usually partitioned along functionality and different units are 

designed by different teams. At any given time, each unit may not be at the same level of design. While 

one unit may be in logic design phase, another unit may be completing its physical design phase. This 

imposes a serious problem for chip level design tools, since these tools must work with partial data at the 

chip level… 

The entire design cycle may be viewed as transformations of representations in various steps. In each 

step, a new representation of the system is created and analyzed. The representation is iteratively 

improved to meet system specifications. We observe from such a description that a great portion of the 

complexity involved is related to the management of transformations of representations. This is translated 

in our conceptualization to control the flow of representations (previously called artifacts), starting with 

drawing maps of flows of representations (which we later call flowthings) running through the design 

flow. These flowthings are created, transformed (processed), transferred, released and received by 

various functions along the design flow at different levels (a hierarchy). The resulting conceptual 

framework can be used to support designers with computer-aided tools to organize and manage the 

chains of tasks. Such a global conceptual framework for managing representations is missing from 
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currently known methodologies. After giving such “conceptually simple” sketches of stages and phases 

shown in Fig. 1, Sherwani (1999) provides a flowchart-like depiction, partially shown in Fig. 2, as an 

example of a “design style” that “shows the physical design cycle with emphasis on timing.” Utilizing 

such a flowchart-like methodology to represent a complex process has many well-known limitations in 

the software development cycle. Additionally, the description loses the essence of the process described 

by Sherwani (1999) as transformations of representations. The object-oriented approach to data 

management has also been proposed in the context of the VLSI design process (Heiler et al., 1987; Weiss 

et a1., 1986). For example, Chung and Kim (1990) propose a “design pattern”, used repeatedly, modeled as 

an identifiable object called an abstract object and represented “internally” as a class, called an abstract class 

(as in UML). The abstract   class includes an “entity type” with four   possible   values:   cell (circuit), 

port, net (a wire   connecting   two ports) and constraint. Figure 3 shows a sample of such 

representation (Chung and Kim, 1990). Clearly,   such a modeling is developed   for   technical   

purposes    and     does not help in development of a design environment. 

 

 

Fig. 4: Sample representation used in selecting a fabrication technology (Hekmatpour et al., 1991) 
 

 

Fig. 5: Flowsystem, assuming that no released flowthing is returned 
 

(a) (b) 
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Fig. 6: Two sample descriptions (a): Layout of circuit blocks (b): Detailed routing 
Another adoption of the object-oriented approach and at a level that follows a hierarchical representation 

of design space, is presented by Hekmatpour et al. (1991), who developed an application-specific model 

to customize the design environment: 

For example, an important task in VLSI design is selecting a fabrication technology that best matches the 

constraints of the design space. In this selection procedure, engineers evaluate the current state of design 

in conjunction with design objectives and constraints… 

[In Fig. 4] The generation of the list of objects… is accomplished by creating a referenceList object… 

 

Note that the purpose of this discussion is to show the type of representation used, not to present a 

complete description of the discussed examples. 

These object-oriented–based methods do not provide a suitable tool for managing a design environment. 

Technical details are usually intermixed with the programming “flow control” and data structures, with 

results no better than the flowchart- based description. 

Alternatively, we aim at drawing a conceptual framework of “things that flow” (representations) in 

different streams of the design process to be used as a tracking mechanism for directing traffic during the 

design process. This is analogous to a real-time system in an imaginary city that tracks movements and 

states of different types of vehicles among streets, factories, stores and intersections. This includes the 

introduction of new vehicles, their processing (e.g., loading, changing color and shapes), their release and 

transfer from one place to another, arrival and acceptance when they enter factories, stores and so on. The 

conceptual model forming the backbone of such a scenario, called the Flowthing Model (FM), has been 

introduced in many publications and will be reviewed in the next section (Al-Fedaghi, 2010; 2011a-c; Al-

Fedaghi and Al-Saleh, 2011; Al-Fedaghi and Fairouz, 2011). 

Foundation: The flowthing model: According to Alberts et al. (1989), a design is an abstract entity 

that is gradually given a concrete form in the course of the design process. Especially in the case of VLSI 

design, it consists of a set of descriptions only. Since a design is represented by its description(s), the 

obvious way to describe design actions is as transformations between descriptions. We extend this line of 

thought by viewing a description as an integral element of a process, called a flowsystem, constructed 

from a generic operation to “handle” descriptions. A description is a thing that flows (a flowthing) in a 

flowsystem. Figure 5 shows a complete flowsystem. There is no description that is not created at a certain 

point. It can be processed (changed in form, but without producing a new description). It can be released 
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and transferred, arrive at another place and be accepted (or rejected). In what other ways is a description 

handled? It can be stored, but storing is not a generic handling operation because created descriptions can 

be stored, processed descriptions can be stored. Similarly, descriptions can be copied, but copying can be 

performed on any one of the six generic types shown in Fig. 5. Accordingly, a description is a flowthing. 

A flowthing is a thing that is handled by these six generic, mutually exclusive operations. Figure 5 

represents the flow system (denoted as flowsystem) of the flowthing. The environment of a flowsystem is 

called its sphere. 

 

 

Fig. 7: FM-based flows of descriptions x and y 
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Fig. 8: VLSI physical design stage 

 
Example: Suppose we have two descriptions, x and y, as shown in Fig. 6. Suppose description x is 

created by department 1 and sent to department 2, where it is processed to create description y. Figure 7 

shows the FM-based description of such a process. In department 1’s sphere, description x is created (and 

a copy is stored), released and transferred to department 2’s sphere. Note that transfer represents the 

interface unit of the sphere with the outside. It is possible that a description is released but not transferred 

(e.g., waiting to fix a broken communication channel). 

At department 2, description x enters, arrives and is accepted in its flowsystem in the sphere. It is possible 

that it is rejected and thus sent back. Assuming that description x is accepted, it is then processed to 

trigger creation of description y. Triggering is represented by a dashed arrow. Description y is then 

released and transferred to somewhere outside department 2. Such a process includes two flows, one of 

description x and one of description y. The flow of description x passes through two flowsystems, 

forming a flowstream. There are two spheres in Fig. 7: that of department 1 and that of department 2. It is 

possible to have subspheres. For the sake of simplicity, when it is appropriate, we will sometimes merge 

arrival and acceptance as one stage called receive. In general, this Flowthing Model describes systems of 

flowthings such as, for example, information, data, money, signals and actions, in addition to artifacts 

such as descriptions (Al- Fedaghi, 2010; 2011a-c; Al-Fedaghi and Al-Saleh, 2011; Al-Fedaghi and 

Fairouz, 2011). Flowthings can exist in only six states: being created, released, transferred, arrived, 

accepted, or processed, with transformations among these states. When a description, as a flowthing, 

changes from one state to another, it has undergone a change of stage.  

The physical design stage of the VLSI design cycle: Without loss of generality, in this section we 

describe the FM-based representation of the physical stage of the VLSI design cycle. This stage is divided 

into multiple phases: partitioning, floorplanning and placement, routing, compaction and extraction and 

verification, as shown in Fig. 8. The following description of the phases is summarized from Sherwani 

(1999). The first phase entails partitioning a circuit into subcircuits. This is a necessary step either 

because of the large number of logic gates that cannot be placed in a single chip or because of the 

limitations of I/O pins. Partitioning is a process that can be performed hierarchically until the size of each 

subcircuit fits in a single chip board. An important goal of the partitioning process is to minimize the 

interconnections (external wires) between the partitions (chip boards). 
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The partitioning process is followed by the floorplanning and placement phase, where the exact position 

of the circuit components in each partition is determined. In this phase, the components with their I/O 

pins and the interconnections between the components in each partition must be taken into consideration. 

The components connected to other components in other partitions must be placed at the edges of the 

partitions. Moreover, the components that belong to the same partition and are heavily connected must be 

placed close to each other to reduce wiring cost. The objective of the floorplanning and placement phase 

is to arrange the components in such a way that leads to minimization of the area arrangement layout and 

the interconnection area without violating any performance constraints. Determining the minimum area 

is done iteratively until minimum area layout is achieved. The result is then passed to the routing phase, 

where the interconnections between the partitions and their components are completed. The routing phase 

is defined as the process that finds the proper routes in the routing area used to connect the partitions and 

the components with minimum wiring space. 
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Fig. 9: FM-Based physical VLSI design stage
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Routing consists of two steps: global routing and detailed routing. In global routing, the approximate 

interconnections between the components and partitions are determined while ignoring any geometric 

details. The resulting figure produces all possible routes in the area through which the wires should go. 

All this information is used in detailed routing to produce the geometric layout of the wires connecting 

the components and partitions. The physical design is then passed on to the compaction phase, where the 

entire design is compressed to minimize the total area of the chip while maintaining all its performance 

and design constraints. The last phase is extraction and verification. All the geometric patterns—such as 

the wiring separation rule—are verified using DRC, the Design Rule Checking process, to check that they 

meet the design rules set by the fabrication stage and that any design rule violations are removed. Many 

verification processes are available, such as Layout Versus Schematics (LVS) verificationn and 

Performance Verification and Reliability Verification. In LVS, layout (design) functionality is checked 

using a Circuit Extraction process, where a circuit representation is generated and extracted from the 

layout; the accuracy of the extracted description is then verified by comparing it with the circuit 

description. The design’s geometric information is extracted and used in Performance Verification to 

determine resistance and capacitance to accurately compute the timing of each component with the 

interconnections. Moreover, this information is also used in the Reliability Verification process to verify 

the reliability of the layout and ensure that electro-migration, self-heat and other effects will not lead the 

layout to fail. The final physical design is then carried to the next stage in the VLSI design process, the 

Fabrication stage. 

 

FM-based description: FM can provide a complete picture of various artifact flows and their 

transformations in the physical design stage. Figure 9 shows the resulting FM conceptualization in terms 

of five spheres: partitioning, floorplanning and placement, routing, compaction and extraction and 

verification. Here, a sphere denotes a new task corresponding to a department, a designer, or a different 

role in the same organizational unit. 

 

Partitioning: The partitioning sphere includes flows of circuits, external connections and partitions (sub- 

circuits). It consists of three flowsystems: a circuits flowsystem, an external connections flowsystem and a 

partitions flowsystem. 

Example: A circuit can be represented by a hypergraph, where the vertex set denotes the set of partitions 

and the hyperedge (a subset-called the pins-of the set of vertices) denotes the set of nets (external 
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connections). 

In Fig. 9, the circuit flowsystem (circle 1) receives the incoming circuit sketch from the previous stage 

(circuit design) and stores a copy for future use. The circuit is then processed (partitioned) based on the 

number of circuit components and design constraints. The distribution process of the components is 

performed using optimization partitioning algorithms (e.g., Kernighan-Lin algorithm) in order to 

minimize the number of interconnections between partitions. This process triggers the appearance of new 

flowsystems that have emerged as a result of creating new flowthings: an external connections flowsystem 

(circle 2) and a partitions flowsystem (circle 3). 

The created partitions are released and transferred to the floorplanning and placement sphere (circle 

4). The created external connections are also transferred to the sphere of the design flow system (circle 5), 

where they wait for the transformed partitions to again form a united chip. 

It is not difficult to see that this description of artifacts and their transformation can be used as a base 

for developing a manual or automated system to manage the tracking of various items in the system. 

Floorplanning and placement: Partitions are transferred to this sphere. Note that it is possible that a 

partition that is transferred may not arrive (e.g., lost, destroyed); thus this FM-based model facilities such 

events, if required. Upon arrival (say, formal acknowledgment of receipt by another designer), the 

partition may be accepted (circle 6) after verification of design. Or, if not accepted, a repartition signal 

(request) is triggered to again partition the original circuit sketch (circle 7). Each partition is then stored in 

the database of the floorplanning and placement sphere (circle 8) and processed (e.g., the exact location of 

each component is determined). Eventually the redesigned partitions are transferred to the routing sphere 

(circle 9). 

 

Routing: The resultant redesigned partitions flow to the routing sphere to be verified; if not accepted, 

they trigger a request for reprocessing in the floorplanning and placement sphere. The external 

connections are by now waiting in their flowsystem in the routing sphere. If accepted, these two artifacts 

are viewed as two portions that trigger the creation of a new circuit description (circles 10 and 12). That 

is: 

 The partitions flowsystem in the routing sphere receives all partitions from the floorplanning and 

placement sphere 

 The external connections flowsystem in the routing sphere receives external connections from the 

partitioning sphere 

IJECE JOURNAL || ISSN:2349-8218 || VOLUME 14 ISSUE 9 2024

PAGE N0: 127



 

 

 Both events in (1) and (2) trigger creation of the new circuit, which is processed to join its two portions 

and perform global and detailed routing (circle 13). The design is then released and transferred to the 

compaction sphere (circle 14) 

Compaction and extraction sphere: The next phase is the compaction phase, where the modified design 

is compressed. As shown in Fig. 9, if the design is rejected, a rerouting signal is sent to the previous phase 

(circle 15). The compaction sphere contains two different processes. In the first type of process (circle 16), 

the design is compressed and in the second process (circle 17), the constraints are checked. In case of any 

problem, the second process triggers a signal to the database to indicate that a violation has appeared 

(circle 18). 

Extraction and Verification sphere: This is the final phase, where the accurate functionality of the 

design 

layout is verified in the acceptance process (circle 19). When the verification process is completed, the 

final version of the physical design is transferred to the fabrication stage (circle 20). 

 
CONCLUSION 

This study proposes a high-level detailed view that assists in the management of the VLSI design 

process. The resulting conceptual framework represents flows and transformations of various descriptions 

(e.g., circuits, technical sketches) and is used as a tracking apparatus for directing traffic during the VLSI 

design process. It is applied in describing the physical design stage that includes partitioning, 

floorplanning and placement, routing, compaction and extraction and vertification. The flow-based 

description demonstrates the viability of a methodology that can be adopted for all stages and substages 

of the VLSI design process. The conceptual description can act as a foundation as well as provide a 

simpler or more detailed specification of the system. Many diagram-based conceptual descriptions 

become cumbersome because there is no restriction on the basic conceptual apparatus. Consider a logical 

operator such as AND, OR and other flow- control mechanisms such as synchronization that can be 

erected when flows join together and when timing needs coordination. In the flowthing model, such 

notions apply, if needed, in the second level of specification. These tools are “unnatural” controls from 

the flow point of view. Imagine a civil engineer who draws a map of a territory that includes a river 

system. First, the engineer draws a topographic model, including streams, directions, joins (without, for 

example, worrying about the type of joining, e.g., relative speed of currents) and branches (e.g., relative 

division of water; one branch may have a dead end). The engineer then inspects the model and decides 
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about damming, channelization, diversion, bridge construction and sand or gravel mining (Al-Fedaghi 

and Al-Saleh, 2011). For example, a simpler diagram of Fig. 9 is shown in Fig. 10 that can be used for 

nontechnical presentation. It is based on the same FM concepts, but the focus is on streams of flows. 
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