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1. Introduction and Preliminaries 

Fixed point theory is a branch of mathematics that deals with the study of mappings that have 

points that remain unchanged under the mapping process. It provides powerful tools and 

techniques for analyzing the existence, uniqueness, and stability of fixed points in different 

settings. Fixed point theory has found applications in diverse fields. 

One of the most fundamental theorems in fixed point theory is the Banach fixed point 

theorem [3], also known as the contraction mapping principle. This theorem has numerous 

applications in areas such as functional analysis, numerical analysis, differential equations, 

game theory etc. Stefan Banach valuable work has been built by generalizing the metric 

conditions or by imposing conditions on the metric spaces (see [1-18]). 

In this manuscript, we expand the concept of generalized altering distance function and 

introduced  a  generalized  (	ƒ − 
�) −contractive  mappings  and  give  fixed  point  theorems 

for such contractions in metric spaces. 

Khan et al. [11] use a control function (altering distance function) they referred to as a 

changing distance function allowed them to tackle new fixed point problems. 

“Definition 1.1. [11] A function ƒ ∶ [0, ∞) →   [0, ∞) is called an altering distance function if 

the following properties are satisfied 

(i) ƒ(0) = 0 if and only if � = 0, 

(ii) ƒ is continuous and monotonically non-decreasing.” 
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We first recall the auxiliary functions that we shall use effectively. 

“Definition 1.2. Let � be a set, and let � be a binary relation on �. We say that � ∶ � → � 

is an �-preserving mapping if 

ⱨ, ⱪ ∈ � ∶ ⱨ�ⱪ ⟹ �ⱨ��ⱪ.” 

“Definition 1.3. Let ℵ ∈ ℕ. We say that � is ℵ-transitive on � if 

ⱨ0, ⱨ1, … , ⱨℵ+1 ∈ � ∶ ⱨi�ⱨi+1, for all i ∈ {0, 1, … , ℵ} ⟹ ⱨ0�ⱨℵ+1.” 

“Remark 1.4. Let ℵ ∈ ℕ. We have: 

(i) If � is transitive, then it is ℵ-transitive, for all ℵ ∈ ℕ. 

(ii) If � is ℵ-transitive, then it is eℵ-transitive, for all e ∈ ℕ.” 

“Definition 1.5. Let (�, $) be a metric space and �1, �2 two binary relations on �. We say 

that (�, $) is (�1, �2)- regular if for sequence {ⱨ�} in � such that ⱨ� → ⱨ ∈ � as � → ∞, and 

ⱨ��1ⱨ�+1, ⱨ��2ⱨ�+1, for all � ∈ ℕ, 

there exists a subsequence {ⱨ�(e)} such that 

ⱨ�(e)�1ⱨ, ⱨ�(e)�2ⱨ, for all e ∈ ℕ.” 

“Definition 1.6. We say that a subset & of � is (�1, �2) −directed if for all ⱨ, ⱪ ∈ &, there 

exists ' ∈ � such that 

ⱨ�1' ( ⱪ�1' and ⱨ�2' ( ⱪ�2'.” 

“Definition 1.7. Let � be a set and 	, 
 ∶ � × � → [0, +∞) are two mappings. Define two 

binary relations �1 and �2 on � by 

ⱨ, ⱪ ∈ � : ⱨ�1ⱪ iff 	(ⱨ, ⱪ) ≤ 1 

and 

ⱨ, ⱪ ∈ � ∶ ⱨ�2ⱪ iff 
(ⱨ, ⱪ) ≥ 1.” 

Berzig and Karapinar [4] introduced (	ƒ, 
�) −contractive mapping as given below: 

 
“Definition 1.8. Let (�, $) be a metric space, and let � ∶ � → � be a given mapping. We say 

that � is (	ƒ, 
ɸ) −contractive mappings if there exists a pair of generalized distance (ƒ, ɸ) 

such that 

ƒ($(�ⱨ, �ⱪ)) ≤ 	(ⱨ, ⱪ)ƒ($(ⱨ, ⱪ)) − 
(ⱨ, ⱪ)ɸ($(ⱨ, ⱪ)), for all ⱨ, ⱪ ∈ �, 

where 	, 
 ∶ � × � → [0, +∞).” 

2. Main Results 

Definition 2.1. Consider the pair of the functions (ƒ, �)   and this pair of the functions is said 

to  be  strong  generalized  altering  distance  where  ƒ, � ∶ [0, ∞) → [0, ∞)  if  the  following 

conditions hold: 
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(-1) ƒ(0) = 0, 

(-2) ƒ is continuous, 

(-3) ƒ is non-decreasing, 

(-4) Lim �(2�) = 0 ⟹ lim2� = 0. 
�→∞ �→∞ 

Popescu in [16] and Moradi and Farajzadeh [15] introduced condition (C4). 

Definition 2.2. Let (�, $) be a metric space, and let � ∶   � → � be a given mapping. We say 

that  �  is  generalized  (	ƒ, 
�) −contractive  mappings  if  there  exists  a  pair  of  generalized 

distance (ƒ, �) such that 

ƒ($(�ⱨ, �ⱪ)) ≤ 	(ⱨ, ⱪ)ƒ(4(ⱨ, ⱪ)) − 
(ⱨ, ⱪ)�(4(ⱨ, ⱪ)), for all ⱨ, ⱪ ∈ �, 

(2.1) 

where 4(ⱨ, ⱪ) = max {$(ⱨ, ⱪ), $(ⱨ, �ⱨ), $(ⱪ, �ⱪ), 
$(ⱨ,�ⱨ)+$(ⱪ,�ⱪ)

}, 
2 

and 	, 
 ∶ � × � → [0, ∞). 

Theorem 2.3. Let (�, $) be a complete metric space, ℕ0 ∈ ℕ ⋃{0}, and let � ∶ � → � be 

generalized (	ƒ, 
�) −contractive mapping satisfying the following conditions: 

(i) �i is 8 −transitive for i = 1, 2; 

(ii) � is �i −transitive for i = 1, 2; 

(iii) There exists ⱨ0 ∈ � such that ⱨ0�i�ⱨ0 for i = 1, 2; 

(iv) � is continuous. 

Then � has a fixed point, that is, there exists ⱨ ∈ � such that �ⱨ = ⱨ. 

Proof Let ⱨ0 ∈ � such that ⱨ0�i�ⱨ0 for i = 1, 2. Let sequence {ⱨ�} be defined by recursive 

relation ⱨ�+1 = �ⱨ�, for all � ≥ 0. 

If ⱨ� = ⱨ�+1, for some � ≥ 0, then ⱨ = ⱨ� is a fixed point of �. 

Assume that ⱨ� ≠ ⱨ�+1, for all � ≥ 0. 

Form (ii) and (iii), we obtain 

ⱨ0�1�ⱨ0 ⇒ 	(ⱨ0, �ⱨ0) = 	(ⱨ0, ⱨ1) ≤ 1 ⟹ 	(�ⱨ0, �ⱨ1) = 	(ⱨ1, ⱨ2) ≤ 1. 

Similarly, we have 

ⱨ0�2�ⱨ0 ⇒ 
(ⱨ0, �ⱨ0) = 
(ⱨ0, ⱨ1) ≥ 1 ⟹ 
(�ⱨ0, �ⱨ1) = 
(ⱨ1, ⱨ2) ≥ 1. 

By Principal of Mathematical induction and using condition (ii),we have 

	(ⱨ�, ⱨ�+1) ≤ 1, for all � ≥ 0. 

(2.2) 

and, similarly, we have 
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(ⱨ�, ⱨ�+1) ≥ 1, for all � ≥ 0. 

(2.3) 

Substituting ⱨ = ⱨ� and ⱪ = ⱨ�+1 in (2.1), we obtain 

ƒ($(�ⱨ� , �ⱨ�+1)) ≤  	(ⱨ�, ⱨ�+1)ƒ(4(ⱨ�, ⱨ�+1)) − 
(ⱨ�, ⱨ�+1)�(4(ⱨ�, ⱨ�+1)), 

(2.4) 

Using (2.2) and (2.3) in inequality (2.4), we obtain 

ƒ($(ⱨ�+1 , ⱨ�+2)) ≤ ƒ(4(ⱨ�, ⱨ�+1)) − �(4(ⱨ�, ⱨ�+1)), 

(2.5) 

where 4(ⱨ�, ⱨ�+1) 

 
= max {$(ⱨ , ⱨ 

 
), $(ⱨ , �ⱨ  ), $(ⱨ 

 
, �ⱨ ), 

$(ⱨ�, �ⱨ�) + $(ⱨ�+1, �ⱨ�+1)
}
 

� �+1 � � �+1 �+1 2 
 

= max {$(ⱨ�, ⱨ 
 

�+1 ), $(ⱨ�, ⱨ 
 

�+1 ), $(ⱨ 
 

�+1 , ⱨ�+2 ), 
$(ⱨt,ⱨt+1)+$(ⱨt+1,ⱨt+2)

} 
2 

= max {$(ⱨ�, ⱨ 
 

�+1 ), $(ⱨ�+1 , ⱨ�+2 ), 
$(ⱨt,ⱨt+1)+$(ⱨt+1,ⱨt+2)

}.
 

2 

Case (i) If 4(ⱨ�, ⱨ�+1) = $(ⱨ�, ⱨ�+1). 

From (2.5), we get 

 

this implies, 

ƒ($(ⱨ�+1 , ⱨ�+2)) ≤ ƒ($(ⱨ�, ⱨ�+1)) − �($(ⱨ�, ⱨ�+1)), 

 
 

ƒ($(ⱨ�+1 , ⱨ�+2)) ≤ ƒ($(ⱨ�, ⱨ�+1)). 

Since ƒ is non-decreasing function. 

Therefore, $(ⱨ�+1 , ⱨ�+2) ≤ $(ⱨ�, ⱨ�+1). 

Case (ii) If 4(ⱨ�, ⱨ�+1) = $(ⱨ�+1, ⱨ�+2). 

From (2.5), we get 

ƒ($(ⱨ�+1 , ⱨ�+2)) ≤ ƒ($(ⱨ�+1, ⱨ�+2)) − �($(ⱨ�+1, ⱨ�+2)). 

Since ƒ is non-decreasing function. 

Therefore, above inequality holds only when $(ⱨ�+1, ⱨ�+2) = 0, 

this implies, 

ⱨ�+1 = ⱨ�+2, which is a contradiction. 

Hence our supposition was wrong. 

Therefore, 4(ⱨ�, ⱨ�+1) ≠ $(ⱨ�+1, ⱨ�+2). 

From above discussed cases, we get $(ⱨ�+1, ⱨ�+2) ≤ $(ⱨ�, ⱨ�+1). 

It shows that sequence {$(ⱨ�, ⱨ�+1)} is monotonically decreasing. 
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From above discussed cases, we also get 4(ⱨ�, ⱨ�+1) = $(ⱨ�, ⱨ�+1). 

(2.6) 

Using (2.6) in (2.5), we obtain 

ƒ($(ⱨ�+1 , ⱨ�+2)) ≤ ƒ($(ⱨ�, ⱨ�+1)) − �($(ⱨ�, ⱨ�+1)), 

(2.7) 

Thus, there exists = ∈ ℝ+ such that lim $(ⱨ�, ⱨ�+1) = =. 
�→∞ 

(2.8) 

We will prove that = = 0. 

Letting � → ∞ in inequality (2.7), we get 

lim ƒ($(ⱨ�+1 , ⱨ�+2)) ≤  lim ƒ($(ⱨ�, ⱨ�+1)) −  lim�($(ⱨ�, ⱨ�+1)), 
�→∞ �→∞ �→∞ 

Using (2.8) in above inequality, we get 

ƒ(=) ≤ ƒ(=) −  lim�($(ⱨ�, ⱨ�+1)), 
�→∞ 

this implies, 

 

 
By using condition (C3), we get 

 

 
(2.9) 

 

lim �($(ⱨ�, ⱨ�+1)) = 0, 
�→∞ 

 
 

lim $(ⱨ�, ⱨ�+1) = 0. 
�→∞ 

On the other hand, by (2.2) and (i), we obtain 
 

	(ⱨ?, ⱨ?+e8+1) ≤ 1 

(2.10) 

for all ?, e ≥ 0. 

and, similarly, we have    


(ⱨ?, ⱨ?+e8+1) ≥ 1 

(2.11) 

for all ?, e ≥ 0. 

Now, substituting ⱨ = ⱨ? and ⱪ = ⱨ?@ in (2.1), where ?′ = ? + e8 + 1, for some ?, e ≥ 0, 

we obtain 

ƒ($(�ⱨ?, �ⱨ?@ )) ≤  	(ⱨ?, ⱨ?@ )ƒ(4(ⱨ?, ⱨ?@ )) − 
(ⱨ?, ⱨ?@ )�(4(ⱨ?, ⱨ?@ )), 

(2.12) 

where 4(ⱨ?, ⱨ?@ ) 

 
=  max {$ 

 
(ⱨ?, ⱨ?@ ), $(ⱨ?, �ⱨ?), $(ⱨ?@ , �ⱨ?@ ), 

 ( 

$(ⱨ?, �ⱨ?) + $(ⱨ?@ , �ⱨ?@ ) 

2 
} 

$(ⱨu,ⱨu+1)+$(ⱨu@,ⱨ    @      ) 
 

= max {$ ⱨ?, ⱨ?@ ), $(ⱨ?, ⱨ?+1), $(ⱨ?@ , ⱨ?@+1), 
2 

}. 
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}

Using inequalities (2.10), (2.11) in (2.12), we get 

ƒ($(�ⱨ?, �ⱨ?@ )) ≤ ƒ(4(ⱨ?, ⱨ?@ )) − �(4(ⱨ?, ⱨ?@ )), 

(2.13) 

where 4(ⱨ?, ⱨ?@ ) = 

max {$(ⱨ? , ⱨ? @ ), $(ⱨ? , ⱨ?+1 

 

), $(ⱨ ?@ , ⱨ 
 

?@+1 ), 
$(ⱨu,ⱨu+1)+$(ⱨu@,ⱨu@+1)   

.
 

2 

Now we have three different subcases. 

Subcase (i) If 4(ⱨ?, ⱨ?@ ) = $(ⱨ?, ⱨ?@ ). 

Then inequality (2.13) becomes 

ƒ($(ⱨ?+1, ⱨ?@+1)) ≤ ƒ($(ⱨ?, ⱨ?@ )) − �($(ⱨ?, ⱨ?@ )). 

Similarly, from case (i), we get $(ⱨ?+1, ⱨ?@+1) ≤ $(ⱨ?, ⱨ?@ ). 

It shows that sequence {$(ⱨ?, ⱨ?@ )} is monotonically decreasing. 

Now repeating the same steps as after equation (2.8), we obtain 

lim $(ⱨ?, ⱨ?@ ) = 0. 
?→∞ 

Subcase (ii) If 4(ⱨ?, ⱨ?@ ) = $(ⱨ?, ⱨ?+1). 

Then inequality (2.13) becomes 

ƒ($(ⱨ?+1, ⱨ?@+1)) ≤ ƒ($(ⱨ?, ⱨ?+1)) − �($(ⱨ?, ⱨ?+1)), 

Letting ? → ∞ and using (2.9), we get 

lim ƒ($(ⱨ?+1, ⱨ?@+1)) = 0, 
?→∞ 

this implies,  

lim $(ⱨ?+1, ⱨ?@+1) = 0. 
?→∞ 

Subcase (iii) If 4(ⱨ?, ⱨ?@ ) = $(ⱨ?@ , ⱨ?@+1). 

Then inequality (2.13) becomes 

ƒ($(ⱨ?+1, ⱨ?@+1)) ≤ ƒ($(ⱨ?@ , ⱨ?@+1)) − �($(ⱨ?@ , ⱨ?@+1)). 

Similarly, from subcase (ii), we get 

lim $(ⱨ?+1, ⱨ?@+1) = 0. 
?→∞ 

From all above discussed subcases, we conclude that 

lim $(ⱨ?, ⱨ?@ ) = 0. 
?→∞ 

(2.14) 

Next, we will prove that {ⱨ�} is Cauchy sequence. Suppose, to the contrary, that {ⱨ�} is not a 

Cauchy sequence. 
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Then there is ∈ > 0 and sequences {?(e)} and {�(e)} such that, for all positive integers e, we 

have 

 

(2.15) 

�(e) > ?(e) > e, $(ⱨ?(e), ⱨ�(e)) ≥ ∈ and $(ⱨ?(e), ⱨ�(e)−1) < ∈ 

Then we have 

∈ ≤ $(ⱨ?(e), ⱨ�(e)) ≤  $(ⱨ?(e), ⱨ�(e)−1) + $(ⱨ�(e)−1, ⱨ�(e)) < ∈ + $(ⱨ�(e)−1, ⱨ�(e)) 

Letting e → ∞ and using (2.9), we get 

lim  $(ⱨ?(e), ⱨ�(e)) = ∈. (2.16) 
e→∞ 

Furthermore, for each e ≥ 0, there exists Ee, 5e > 0 such that ?′(e) = ?(e) + 8Ee+1 + 1 = 

�(e) + 5e. 

?@(e)−1 

∈ ≤  $(ⱨ?(e), ⱨ?@(e)) ≤  $(ⱨ?(e), ⱨ�(e)−1) + ∑ $(ⱨi, ⱨi+1)  < ∈ + 

i=�(e)−1 

?@(e)−1 

∑ $(ⱨi, ⱨi+1) 

i=�(e)−1 

Again, letting e → ∞ and using (2.9), we get 

lim $(ⱨ?(e), ⱨ?@(e)) = ∈. 
e→∞ 

(2.17) 

Again 

$(ⱨ?(e), ⱨ?@(e)) ≤ $(ⱨ?(e), ⱨ?(e)−1) + $(ⱨ?(e)−1, ⱨ?@(e)−1) + $(ⱨ?@(e)−1, ⱨ?@(e)), 

$(ⱨ?(e)−1, ⱨ?@(e)−1) ≤ $(ⱨ?(e)−1, ⱨ?(e)) + $(ⱨ?(e), ⱨ?@(e)) + $(ⱨ?@(e), ⱨ?@(e)−1) 

Letting e → ∞ in above inequalities, using (2.9), (2.14) and (2.17), we get 

lim 
e → ∞ 

$(ⱨ?(e)−1, ⱨ?@(e)−1) = ∈. 

(2.18) 

Substituting ⱨ = ⱨ?(e)−1 and ⱪ = ⱨ?@(e)−1 in (2.1), we have 

ƒ ($(�ⱨ?(e)−1, �ⱨ?@(e)−1)) ≤  	(ⱨ?(e)−1, ⱨ?@(e)−1)ƒ (4(ⱨ?(e)−1, ⱨ?@(e)−1)) − 
 


(ⱨ?(e)−1, ⱨ?@(e)−1)� (4(ⱨ?(e)−1, ⱨ?@(e)−1)) 

Using (2.10) and (2.11) in above inequality, we get 

ƒ ($(ⱨ?(e), ⱨ?@(e))) ≤   ƒ (4(ⱨ?(e)−1, ⱨ?@(e)−1)) − � (4(ⱨ?(e)−1, ⱨ?@(e)−1)), 

(2.19) 

where 4(ⱨ?(e)−1, ⱨ?@(e)−1) 
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$(ⱨ?(e)−1, ⱨ?@(e)−1), $(ⱨ?(e)−1, �ⱨ?(e)−1), $(ⱨ?@(e)−1, �ⱨ?@(e)−1), 
= max { $(ⱨ?(e)−1, �ⱨ?(e)−1) + $(ⱨ?@(e)−1, �ⱨ?@(e)−1) } 

 

2 

$(ⱨ?(e)−1, ⱨ?@(e)−1), $(ⱨ?(e)−1, ⱨ?(e)), $(ⱨ?@(e)−1, ⱨ?@(e)), 
= max { $(ⱨu(e)−1,ⱨu(e))+$(ⱨu@(e)−1,ⱨu@(e)) } . 

 

2 

Subsubcase (i) If 4(ⱨ?(e)−1, ⱨ?@(e)−1) = $(ⱨ?(e)−1, ⱨ?@(e)−1). 

Then inequality (2.19) becomes 

ƒ ($(ⱨ?(e), ⱨ?@(e))) ≤   ƒ ($(ⱨ?(e)−1, ⱨ?@(e)−1)) − � ($(ⱨ?(e)−1, ⱨ?@(e)−1)), 

Letting e → ∞ in above inequality, using (2.17), (2.18) and the continuity of ƒ and �, we 

get 

ƒ(∈) ≤  ƒ(∈) −  lim � ($(ⱨ?(e)−1, ⱨ?@(e)−1)). 
e → ∞ 

Using the condition (C3), we conclude that ∈ = 0. 

Subsubcase (ii) If (ⱨ?(e)−1, ⱨ?@(e)−1) = $(ⱨ?(e)−1, ⱨ?(e)). 

Then inequality (2.19) becomes 

ƒ ($(ⱨ?(e), ⱨ?@(e))) ≤ ƒ ($(ⱨ?(e)−1, ⱨ?(e))) − � ($(ⱨ?(e)−1, ⱨ?(e))), 

Letting e →  ∞ in above inequality, using (2.9) and the continuity of ƒ and �, we get 

ƒ(∈) ≤ ƒ(0) − �(0) = 0, 

this implies, 

ƒ(∈) = 0 ⟹ ∈= 0. 

Subsubcase (iii) If 4(ⱨ?(e)−1, ⱨ?@(e)−1) = $(ⱨ?@(e)−1, ⱨ?@(e)). 

Then inequality (2.19) becomes 

ƒ ($(ⱨ?(e), ⱨ?@(e))) ≤  ƒ ($(ⱨ?@(e)−1, ⱨ?@(e))) − � ($(ⱨ?@(e)−1, ⱨ?@(e))). 

Letting e → ∞ in above inequality, using (2.9) and the continuity of ƒ and �, we get 

ƒ(∈) ≤ ƒ(0) − �(0) = 0, 

this implies, 

ƒ(∈) = 0 ⟹ ∈= 0. 

From all above discussed three subsubcases, we find ∈ = 0, which is a contraction with ∈ > 

0. 

Hence our supposition was wrong. Hence, therefore {ⱨ�} is a Cauchy sequence. 

Since (�, $) is a complete metric space, then there is ⱨ ∈ � such that lim ⱨ� = ⱨ. 
�→∞ 

Since � is continuous, then we have 
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) } 

ⱨ = lim ⱨ�+1 = lim �ⱨ� = �ⱨ. 
�→∞ �→∞ 

Due to uniqueness of the limit, we derive that �ⱨ = ⱨ, that is, ⱨ is a fixed point �. 

Theorem 2.4 In Theorem 2.3, if we replace the continuity of � by the (�1, �2) −regularity 

of (�, $), then the conclusion of Theorem 2.3 holds. 

Proof Following the proof of Theorem 2.3, we know that  the sequence  {ⱨ�}  defined by 

ⱨ�+1 = �ⱨ� for all � ≥ 0, converges to some ⱨ ∈ �. Since (�, $) is a complete metric space, 

then there exists ⱨ ∈ � such that ⱨ� → ⱨ as � → ∞. 

Furthermore, the sequence {ⱨ�} satisfies (2.2) and (2.3), that is, 

ⱨ��1ⱨ�+1, ⱨ��2ⱨ�+1, for all � ∈ ℕ. 

Now, since is (�1, �2) −regular, then there exists a subsequence {ⱨ�(e)} of {ⱨ�} such that 

ⱨ�(e)�1ⱨ,  that  is,  	(ⱨ�(e), ⱨ) ≤ 1 and   ⱨ�(e)�2ⱨ,   that   is,   
(ⱨ�(e), ⱨ) ≥ 1,   for   all   e. 

(2.20) 

Substituting ⱨ = ⱨ�(e) and ⱪ = ⱨ, in (2.1), we obtain 

ƒ ($(�ⱨ�(e),  �ⱨ)) ≤  	(ⱨ�(e),  ⱨ)ƒ (4(ⱨ�(e), ⱨ)) − 
(ⱨ�(e), ⱨ)� (4(ⱨ�(e), ⱨ)), for all e. 

Using (2.20) in above inequality, we obtain 

ƒ ($(�ⱨ�(e), �ⱨ)) ≤ ƒ (4(ⱨ�(e), ⱨ)) − � (4(ⱨ�(e), ⱨ)), for all e, 

(2.21) 

 

where 4(ⱨ 

 
 

�(e) 

 
, ⱨ) = max {$(ⱨ 

 
 

�(e) 

 
, ⱨ), $(ⱨ 

 
 

�(e) 

 

, ⱨ�(e)+1 , $(ⱨ, �ⱨ), 
$(ⱨt(e),�ⱨt(e))+$(ⱨ,�ⱨ) 

2 

Case (i) If 4(ⱨ�(e), ⱨ) = $(ⱨ�(e), ⱨ). 

Then inequality (2.21) becomes 

ƒ ($(ⱨ�(e)+1,  �ⱨ)) ≤ ƒ ($(ⱨ�(e), ⱨ)) − � ($(ⱨ�(e), ⱨ)), for all e. 

this implies, 
 

ƒ ($(ⱨ�(e)+1, �ⱨ)) ≤ ƒ ($(ⱨ�(e), ⱨ)), for all e. 

Since ƒ is non-decreasing function. Therefore, 

$(ⱨ�(e)+1, �ⱨ) ≤  $(ⱨ�(e), ⱨ), for all e. 

Letting e → ∞ in above inequality, we obtain 

$(ⱨ, �ⱨ) = 0 ⟹ ⱨ = �ⱨ. 

Case (ii) If 4(ⱨ�(e), ⱨ) = $(ⱨ�(e), ⱨ�(e)+1). 

Then inequality (2.21) becomes 

ƒ ($(ⱨ�(e)+1, �ⱨ)) ≤ ƒ ($(ⱨ�(e), ⱨ�(e)+1)) − � ($(ⱨ�(e), ⱨ�(e)+1)), for all e. 
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Letting e → ∞ in above inequality, we obtain 

$(ⱨ, �ⱨ) = 0 ⟹ ⱨ = �ⱨ. 

Case (iii) If 4(ⱨ�(e), ⱨ) = $(ⱨ, �ⱨ). 

Then inequality (2.21) becomes 

ƒ ($(ⱨ�(e)+1,  �ⱨ)) ≤ ƒ($(ⱨ, �ⱨ)) − �($(ⱨ, �ⱨ)), for all e. 

Letting e →  ∞ in above inequality, and the continuity of ƒ and �, we get 

ƒ($(ⱨ,  �ⱨ)) ≤ ƒ($(ⱨ, �ⱨ)) − �($(ⱨ, �ⱨ)), for all e. 
 

 

 
By using condition (C3), we get 

lim 
e → ∞ 

�($(ⱨ, �ⱨ)) = 0. 

$(ⱨ, �ⱨ) = 0 ⟹ ⱨ = �ⱨ. 

From all above discussed three cases, we get �ⱨ = ⱨ. 

Theorem 2.5. Adding to the hypotheses of Theorem 2.3 (respectively, Theorem 2.4) that � is 

(�1, �2) −directed, we obtain uniqueness of the fixed point of �. 

Proof Suppose that ⱨ and ⱪ are two fixed points of �. Since � is (�1, �2) −directed, there 

exists ' ∈ � such that 

	(ⱨ, ') ≤ 1, 	(ⱪ, ') ≤ 1. 

(2.22) 

and 


(ⱨ, ') ≥ 1, 
(ⱪ, ') ≥ 1. 

(2.23) 

Since � is �i −preserving for i = 1, 2, from (2.22) and (2.23), we get 
 

	(ⱨ, �� ') ≤ 1, 	(ⱪ, ��') ≤ 1, for all � ≥ 0. 

(2.24)    

and    


(ⱨ, ��') ≥ 1, 
(ⱪ, �� ') ≥ 1, for all � ≥ 0. 

(2.25)    

Substituting ⱨ = ⱨ, ⱪ = ��' in (2.1), we have    

ƒ ($(�ⱨ, �(��'))) ≤  	(ⱨ, ��')ƒ(4(ⱨ, ��')) − 
(ⱨ, ��')�(4(ⱨ, ��')). 

(2.26) 

Using (2.24), (2.25) and (2.1), we obtain 

ƒ($(ⱨ, ��+1')) ≤ ƒ(4(ⱨ, ��')) − �(4(ⱨ, ��')), 

(2.27) 
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where 4(ⱨ, ��') = max {$(ⱨ, ��'), $(ⱨ, �ⱨ), $(��', ��+1'), 
$(ⱨ,�ⱨ)+$(�t4,�t+14)

 
2 

 

= max {$(ⱨ, ��'), $(��', ��+1'), 
$(�t4,�t+14)

}. 
2 

Case (i) If 4(ⱨ, ��') = $(ⱨ, ��'). 

Then inequality (2.27) becomes 

ƒ($(ⱨ, ��+1')) ≤ ƒ($(ⱨ, ��')) − �($(ⱨ, ��')), for all � ≥ 0. 

(2.28) 

Since ƒ is non-decreasing function. 

$(ⱨ, ��+1') ≤ $(ⱨ, ��'), for all � ≥ 0. 

It follows that the sequence {$(ⱨ, ��+1')} is decreasing. Thus there exists = ≥ 0 such that 

lim $(ⱨ, ��+1') = =. 
�→∞ 

We claim that = = 0. 

Letting � → ∞ in (2.28), we get 

ƒ(=) ≤ ƒ(=) −  lim�($(ⱨ, ��')), 
�→∞ 

this implies, 

 

 
(2.29) 

 

lim �($(ⱨ, ��')) = 0. 
�→∞ 

By condition (C3), we obtain 

lim$(ⱨ, ��') = 0. 
�→∞ 

(2.30) 

Similarly, we get 

 

 
 

lim $(ⱪ, ��') = 0. 
�→∞ 

Using (2.29) and (2.30), the uniqueness of the limit gives us ⱨ = ⱪ. 

Case (ii) If 4(ⱨ, ��') = $(��', ��+1') 

Then inequality (2.27) becomes 

ƒ($(ⱨ, ��+1')) ≤ ƒ($(��', ��+1')) − �($(��', ��+1')), for all � ≥ 0 

(2.31) 

Letting � → ∞ in (2.31), we get 

lim ƒ($(ⱨ, ��')) = 0, 
�→∞ 

this implies, 
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(2.32) 

Similarly, we get 

 

 
(2.33) 

lim$(ⱨ, ��') = 0. 
�→∞ 

 
 
 
 

lim $(ⱪ, ��') = 0. 
�→∞ 

Using (2.32) and (2.33), the uniqueness of the limit gives us ⱨ = ⱪ. 

Corollary 2.6. Let (�, $) be a complete metric space, and let � ∶ � → � be a given mapping 

such that if there exists a pair of generalized distance (ƒ, �) such that 

ƒ($(�ⱨ, �ⱪ)) ≤  	(ⱨ, ⱪ)ƒ($(ⱨ, ⱪ)) − 
(ⱨ, ⱪ)�($(ⱨ, ⱪ)),  for all ⱨ, ⱪ  ∈ �, 

And 	, 
 ∶ � × � → [0, ∞). 

Suppose 

(i) �i is 8 −transitive for i = 1, 2; 

(ii) � is �i −transitive for i = 1, 2; 

(iii) There exists ⱨ0 ∈ � such that ⱨ0�i�ⱨ0 for i = 1, 2; 

(iv) � is continuous. 

Then � has a fixed point, that is, there exists ⱨ ∈ � such that �ⱨ = ⱨ. 

Proof Taking 4(ⱨ, ⱪ) = $(ⱨ, ⱪ) in Theorem 2.3 to get the proof. 

Corollary 2.5. In Corollary 2.6, if we replace the continuity of � by the (�1, �2) −regularity 

of (�, $), then the conclusion of Corollary 2.6 holds. 
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